
Fault-Tolerant Approaches based on Evolvable Hardware and using a Reconfigurable
Electronic Devices

Didier Keymeulen Adrian Stoica Ricardo Zebulum Yili Jin± Vu Duong

Jet Propulsion Laboratory, ±California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

didier.keymeulen@jpl.nasa.gov
Abstract. The paper presents and compares two ap-
proaches to design fault-tolerant evolvable hardware:
one based on the fitness definition and the other based
on the population statistics. The fitness approach de-
fines, in an explicit way, the faults that the component
may encounter during its life time and evaluates the
average behavior of the individuals. The population
approach uses the implicit information of the population
statistics accumulated by the genetic algorithm over
many generations. The paper presents experiments
done using both approaches on a fine-grained CMOS
Field Programmable Transistor Array (FPTA) archi-
tecture for the synthesis of a fault-tolerant XNOR digi-
tal circuit. Experiments show that the evolutionary
algorithm is able to find a fault-tolerant design for the
XNOR function that can recover functionality when lost
due to not a-priori known faults, by finding new circuits
configurations that circumvent the faults. Our prelimi-
nary experiments show that the population approach
designs a fault-tolerant circuit with a better perform-
ance and in less computation than the fitness based
approach.

1. Introduction

Long-term survivability of space systems, as required for
example by outer solar system exploration and missions to
comets and planets with severe environmental conditions,
has recently been approached with new ideas, such as the
use of biology-inspired mechanisms for hardware
adaptation. The application of evolution-inspired
formalisms to hardware design and self-configuration lead
to the concept of evolvable hardware (EHW). In the narrow
sense EHW refers to self-reconfiguration of electronic
hardware by evolutionary/genetic reconfiguration
mechanisms. In a broader sense EHW refers to various
forms of hardware, from sensors and antennas to complete
evolvable space systems that could adapt to changing
environments and, moreover, increase their performance
during the mission.

EHW can bring one main benefit to spacecraft
survivability by preserving existing functions, in conditions
where hardware is subject to faults, aging, temperature

drifts and radiation, etc. The fault-tolerant property is
extremely important for electronic components used in the
space and nuclear industry where the components are
continuously subjected to ion radiation. As the limits of
VLSI technology are pushed towards sub-micron levels in
order to achieve higher levels of integration, devices
become more vulnerable to radiation induced errors. These
radiation induced erros can lead to system failure. One of
the goals of the future electonics is to design radiation
immune electronic components [20].

We propose to produce electronic systems that are
inherently insensitive to faults such as silicon defects by
using evolution in hardware to design fault-tolerant or
highly reliable systems. The evolution is even able to on-
line self-repair by changing the circuit configuration in
short delay or off-line self-repair by pushing further the
evolution and exploiting defective components as if they
were working parts [15] [16]. This paper reports on
experiments that illustrate how evolutionary algorithms,
using two different approaches, can design fault-tolerant
digital circuit and recover functionality when lost due to
faults, by finding new circuit configurations that
circumvent the faults immediately in hardware.

A variety of circuits have been synthesized through
evolutionary means. For example, Koza used Genetic
Programming (GP) to grow an “embryonic” circuit to one
that satisfies desired requirements [1]. This approach was
used and extended for evolving a variety of circuits,
including filters and computational circuits [2]. On-chip
evolution was demonstrated for the first time by Higuchi
[27]. Later Thompson [3] used an FPGA as the
programmable device, and a Genetic Algorithm (GA) as
the evolutionary mechanism and Kajitani [26] used a
dedicated hardware integrating the GA computation and a
reconfigrable hardware. More details on current work in
evolvable hardware are found in [4], [5], [6], [7], [24].
More recently, evolutionary experiments were performed
on Field Programmable Analog Arrays [18] and custom-
designed ASIC [11][25][28]. Evolutionary algorithms have
also been used with success for designing fault-tolerant
system, such as robotics [15][21] and recently also in
electronics [16][23][22][29].

This paper is organized as follows: Section 2 presents the
fault tolerant principles and the evolutionary method to
obtain fault-tolerant systems. Section 3 presents the FPTA

concept and the experimental setup. Section 4 describes the
fault tolerant experiments using a cascaded FPTAs to
design a XNOR logical function. Section 5 presents some
lessons learned from the experiments and section 6
concludes the paper.

2. Fault Tolerant Principles for Evolvable
Hardware

The definition of fault tolerance is simply that a fault in a
component does not cause the overall system to
malfunction [14]. The malfunction is in general a loss of
service that can be total or partial as for example on a
computer network. The characteristic of fault tolerance is
not absolute. The question is one of degree: how much
tolerance to faults is required varies from application to
application. In our electronic experiment, the malfunction
is calculated by the mean square error between a desired
output DC characteristic and the actual output.

Fault tolerant systems are evaluated by two criteria: their
reliability and their availability. The reliability measures
how long can the system operate before malfunctioning
even in the presence of faulty components. The availability
measures the expected proportion of time that the system
will be available for use. In our experiment on electronic
device, the reliability of the circuit is measured by
evaluating the malfunction of the electronic device when
injecting faults. The availability is measured by calculating
the time needed by the evolution process to retrieve a
satisfactory circuit design.

Two principles for designing fault-tolerant systems can
be applied for evolutionary design: redundancy and on-line
repair. The redundancy concept is well understood: if part
of a system fails, there is an "extra" or spare" that is able to
operate in the place of the failed component such that the
operation of the system is uninterrupted. The on-line repair
imposes that the system with a failed component should be
made unavailable as less as possible while the system is in
service. These two principles can be applied to fault-
tolerant evolutionary design. First, redundancy is obtained
by using a circuit with a large number of connections and
elements (transistors). Second, the on-line repair is
obtained by searching, in the population, for a correct
circuit, or by running the GA during a limited number of
generations.

Two different approaches were proposed to build fault
tolerant system using evolutionary algorithms:
1. Fitness Based Fault-Tolerant Design: it consists of

injecting during the evolutionary process, the faults
known a-priori that may occur in the circuit during its
life-time [19].

2. Population Based Fault-Tolerant Design: it consists of
extracting from a population of evolved circuits, the in-

dividual which adequately performs a desired function-
ality in the presence of a fault and eventually continue
the evolution to attain a performance equal to that before
the fault occurred [16].

While in the population based approach no previous
knowledge of the faults that may occur is assumed, the
fitness based approach requires a-priori knowledge of the
defects. We will show in this paper that the population
fault-tolerant approach using the population statistics
accumulated by the genetic algorithm performs better than
the fitness fault-tolerant approach. In the following section
we present the FPTA and the evolutionary platform on
which we conduct the experiments. Then the e periments
and their results are described.

3. Test Bed for FPTA
The idea of a programmable transistor array was

introduced first in [11]. The FPTA cell is an array of
transistors interconnected by programmable switches. The
status of the switches (ON or OFF) determines a circuit
topology and consequently a specific response. Thus, the
topology can be considered as a function of switch states,
and can be represented by a binary sequence, such as
“1011…”, where by convention one can assign 1 to a
switch turned ON and 0 to a switch turned OFF. The FPTA
architecture allows the implementation of bigger circuits by
cascading FPTA cells. To offer sufficient flexibility the
module has all transistor terminals connected via switches
to expansion terminals (except those connected to power
and ground). Figure 1 illustrates an example of a FPTA
cell consisting of 8 transistors and 24 programmable
switches. In this example the transistors P1-P4 are PMOS
and N5-N8 are NMOS. A test chip implementing the
FPTA architecture was developed. The programmable
switches were implemented with transistors, acting as
simple T-gate switches. Each chip contains one FPTA
module and was fabricated as a Tiny Chip through MOSIS,
using 0.5-micron CMOS technology. The test board with
four chips mounted on it is illustrated in Figure 3.

S7
P1

S4

S1

P2

V +

S12

S5

P4

S14

S15

S22

N6

N8

S24S23

N 7

S20

N 5
S11

S18

S17

S6
S9

S8

S2

S3
P3

S13
S10

S16

S19
S21

V -
Figure 1. Module of the FPTA Cell

An evolutionary design tool was developed to facilitate
experiments in hardware evolution [17]. The tool
illustrated in Figure 2 uses the public domain Parallel
Genetic Algorithm package, PGAPack and an evovable
hardware test bed built around LabView. An interface code
links the GA with the hardware where potential designs
are evaluated, while a GUI allows easy problem
formulation and visualization of results. At each generation
the GA produces a new population of binary chromosomes,
which get converted into configuration bits for the
reconfigurable devices. Configuration bits are further
downloaded into the hardware device by LabView. Circuit
evolutionary synthesis directly on the chip became possible
at an expected accelerated pace of over two orders of
magnitude compared to the simulation on a workstation

Figure 2. Environment for evolutionary hardware design.

4. Fault-Tolerant Experiments

The aim of this experiment was to test and compare the
reliability and availability of a circuit design obtained by
respectively a population and a fitness based evolution. The
experiment setup consists of two cascaded FPTAs each
programmed by 24 internal swiches. The 2 FPTA are
connected together by 6 external wires controlled by 6
programmable switches (Figure 3). Each FPTA is
connected through 4 programmable switches to two input
voltages, one current bias and one output load. There are a
total of 62 switches controlling the 2 cascaded FPTAs and
representing the chromosome for the GA (Figure 4).

Figure . 3. A test board with 2 cascaded FPTAs (The two FPTAs
used in the experiment are on the left side of the picture)

The experiment consisted of the evolutionary design of a
XNOR logical function using two square wave voltage
inputs, at frequency of 50Hz and 100Hz respectively
(Figure 5). The fault tolerance test encompassed the
introduction of six single faults on the external wires
connecting the 2 FPTAs by imposing the switches to be
ON (short fault) or OFF (cut fault). The evaluation
function is the MSE between the output response of the
circuit obtained by evolution and the ideal output signal of
a XNOR logical function.

The experiments used a Genetic Algorithm (GA) with
the following parameters: population 200, tournament
selection of size 10; uniform mutation probability: 0.04,
uniform cross-over probability: 0.7, elite strategy: 10%,
fitness function: mean square error. The GA obtained the
XNOR response in 60 generations, taking 3 minutes.

1. Population Fault-Tolerant Evolution

Evolution started by randomly initiating the population
chromosomes, which were transformed into connection
patterns. These are downloaded into the chips and the

Graphical
User Interface

PGAPACK
Parallel

Genetic Algorithm

Evolutionary Design Environment

Genes

Desired
Data

4 PTAs
controlled by

LabView

Configuration
Bits

Hardware
Execution

Data
from
Data

Acquisition
Board

Fitness of
individual

device/circuit

output of the generated circuits was directly monitored and
compared with the desired DC XNOR response. After 60

generations a circuit that satisfied the requirements was
found and is shown in Figure 6.

Figure . 4. Cascaded FPTAs used to design a fault-tolerant XNOR circuit with 62 switches. The 6 connections indicated by
a circle are subjected to faults. (CUT: switch OFF: fault 0, fault 3, fault 5) (SHORT: switch ON: fault 1, fault 2, fault 4)

Figure 5. Input Signal 1(100Hz), Input Signal 2 (50Hz) and the Output Signal of the XNOR circuit configuration. (X axis:

0.25 msec/unit; switches: 1Volt/unit).

Figure. 6. Best Circuit Design at Generation 60

We inject five faults by cuting (set the switch OFF:
fault0, fault3, fault5) or shorting (set the switch ON: fault1,
fault2, fault4) one by one the external connections between
the two FPTAs. Figure 7 shows that the best circuit
configuration does not achieve the XNOR functionality for
faults 2, 3, 4, 5. Looking in the population at generation
60, we found mutants with better responses for faults 2 and
5 as shown in figure 8 and 10. However we could not find
mutants with acceptable performance for fault 3 and 4
(figure 10). We then re-started the GA with the population
of its last run evaluating the individuals under fault 3 and
fault 4 conditions [15]. In case of fault 4, and starting with
the last available population, it took half less generations
(30 generations) to recover than when starting with a
random population as shown on figure 9. In figure 10 we
compare the performance of the best circuit and the
mutants found for each fault. It illustrates that the
population approach is able to find on-line a circuit
configuration to resolve the faults.

Figure. 7. Output of the Best Circuit Configuration obtained by
population based evolution when 6 faults are injected. (The re-
sponse are shifted in time in all the figures to enhance the illus-

tration)

Figure. 8. Response of best performing mutants for each fault.
Further evolution was needed to find a XNOR circuit for fault3

and fault 4.

Figure 9. Fitness through generation for Population based and
Fitness based fault-tolerant approach.

Fig. 10. Comparison between the Fitness of the Best Circuit and
Mutant Circuits obtained by a population based evolution.

Generations

Fi
tn

es
s

0 15 30 45 60 75 90 105 120
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

No Fault

1 Fault is Injected

Free Design Fitness
Fault Tolerant Fitness

Time, msec

Vo
ut

, V
ol

t

0 2.5 5 7.5 10 12.5 15 17.5 20
-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Fault 0
Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
No Faults

Time, msec

Vo
ut

, V
ol

t

0 2.5 5 7.5 10 12.5 15 17.5 20
-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Fault 0
Fault 1
Fault 2
Fault 3 (Repaired)
Fault 4 (Repaired)
Fault 5
No Faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Fault Fault 0 Fault 1 Fault 2 Fault 3 Fault 4 Fault 5

F
it

n
es

s Best Circuit
Mutant
Self Repaired
Evolution Speedup

2. Fitness based Fault-Tolerant Evolution

In the fitness based fault-tolerant experiment, the
chromosomes are evaluated in four different circuit states:
one without fault, and three with a single fault. The three
faults are fault 2 (switch ON), fault 3 (switch OFF) and
fault 5 (switch OFF). The fitness of the chromosome is the
average of the four evaluations. After 30 generations, the
genetic algorithm finds a circuit that best satisfied the
requirement (Figure 9). The circuit configuration is shown
on Figure 11.

We then inject six faults. As expected the circuit achieves
the XNOR functionality for each of the three faults
included explicitly into the fitness function (fault 2, fault 3,
fault 5) (Figure 12). The circuit is also able to achieve the
XNOR functionality with faults not included into the
fitness function such as fault 0, fault 1 and fault 4 but with
a lower performance for fault 0 (Figure 13). Finally we
applied inverse faults to the best circuit configuration. It
shows that the circuit configuration cannot achieve the
XNOR functionality when fault 2 is inverse.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Fault Fault 0 Fault 1 Fault-
Tolerant 2

Fault-
Tolerant 3

Fault 4 Fault-
Tolerant 5

Inverse
Fault 2

Inverse
Fault 3

Inverse
Fault 5

Fault Tolerant Circuit
Mutant

Figure
13. Comparison between the fitness of best and mutant

configuration obtained by a fitness based evolution.

Figure 11. Circuit Schematic of the best individual obtained by fitness based approach.

Figure 12. Output of the best circuit configuration obtained by fitness based evolution when 9 faults are injected

6. Lessons Learned

We compared two approaches for designing a fault-
tolerant field programmable transistor array and we
conclude from our preliminary experiments that the
population approach offers the following advantages
compared to the fitness approach.

• The population approach builds circuits with a better

performance in a no-fault situation than the circuit ob-
tained by the fitness approach, because, in the later
case, the evolution is constrained by the faults imposed
to the circuit. But the fitness approach has the advan-
tage of achieving a single circuit robust to multiple
faults.

• The population approach offers an on-line self-repair

mechanism able to find circuit in the population with
better performance than the circuits obtained by the
fitness approach. Although the best circuit configura-
tion for a non-fault situation is not robust, the popula-
tion contains mutant configurations able to achieve the
desire functionality with the faulty circuit. They even
display a better performance than the best configura-
tion and mutants obtained by the fitness approach.

• The population approach offers an off-line self-repair

mechanism able to self-heal circuit in few more gen-
erations with better performance than the circuit ob-
tained by the fitness approach.

• The population approach requires less computation than

the fitness approach because in the later case the ge-
netic algorithm must evaluate the circuits with the
faults.

These experiments open the way for further investigation

of the property of fault-tolerant evolutionary techniques
applied to electronics such as the behavior of the fault-
tolerant system when arbitrary and large number of fauts
are injected and the unavaibility time is limited. The
methodoly can also be addressed by combining the
population and the fitness approaches, or by including in a
more explicit way redundancy in the system such as
explored in the "embryological" development approach
[13].

8. Conclusion

The paper demonstrates the power of evolutionary
algorithms to design digital fault-tolerant circuit. It
compares two methods to achieve fault-tolerant design one
based on fitness and the other based on population. It
shows that although the classic fault-tolerant design
approach is able to create a reliable circuit design by
evaluating the behavior of the circuit when well known
faults are injected during the evolutionary process, better
circuit performance and in less computation time for a
same fault-tolerant degree is achieved by allowing the
evolutionary design process to be free of all faults
constraints.

Acknowledgements

This research was performed at the Center for Integrated
Space Microsystems, Jet Propulsion Laboratory, California
Inst. of Technology and was sponsored by the Defense
Advanced Research Projects Agency (DARPA) under the
Adaptive Computing Systems Program.

Time, msec

Vo
ut

, V
ol

t

0 2.5 5 7.5 10 12.5 15 17.5 20
-0.8

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Fault 0
Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 2 Inv
Fault 3 Inv
Fault5 Inv
No Faults

Reference

[1] J. Koza, F.H. Bennett, D. Andre, and M.A Keane, “Auto-
mated WYWIWYG design of both the topology and compo-
nent values of analog electrical circuits using genetic pro-
gramming”, Proceedings of Genetic Programming Confer-
ence, Stanford, CA , pp. 28-31, 1996

[2] J. Lohn, J. and S. Colombano, “Automated Analog Circuit
Synthesis using a linear representation”, M. Sipper, D. Mange
and A. Perez-Uribe (Eds.) Evolvable Systems: From Biology
to Hardware, Springer-Verlag Lecture Notes in Computer Sci-
ence Berlin 1998, pp. 125-133

[3] A. Thompson, “An evolved circuit, intrinsic in silicon, en-
twined in physics”. In International Conference on Evolvable
Systems. Springer-Verlag Lecture Notes in Computer Science,
1996, pp. 390-405.

[4] E. Sanchez and M. Tomassini (Eds.) Towards Evolvable
Hardware, LNCS 1062, Springer-Verlag, 1996

[5] T. Higuchi, M. Iwata, and W. Liu (Eds.) Evolvable Systems:
From Biology To Hardware, Proc. of the First International
Conference, ICES 96, Tsukuba, Japan, Springer-Verlag Lec-
ture Notes in Computer Science, 1997.

[6] M. Sipper, D. Mange, A. Perez-Uribe (Eds.) Evolvable Sys-
tems: From Biology To Hardware, Proc. of the Second Inter-
national Conference, ICES 98, Lausanne, Switzerland,
Springer-Verlag Lecture Notes in Computer Science, 1998.

[7] J. R. Koza, F. H. Bennett III,, D. Andre and M. A. Keane,
Genetic Programming III – Darwinian Invention and Problem
Solving, Morgan Kaufman, San Francisco, 1999

[8] E. Vitoz, Analog VLSI Processing: Why, Where and How,
Journal of VLSI Processing, Kluwer, 1993

[11] Stoica, A. Toward evolvable hardware chips: experiments
with a programmable transistor array. Proceedings of 7th In-
ternational Conference on Microelectronics for Neural, Fuzzy
and Bio-Inspired Systems, Granada, Spain, April 7-9, IEEE
Comp Sci. Press, 1999.

[12] Layzell, P. A New Research tool for Intrinsic Hardware
Evolution. In Proceedings of ICES’98, Lausanne, Switzerland,
1998

[13] P. Marchal et al. Embryological development on silicon. In
R. Brooks and P. Maes, editors, Artificial Life IV, pages 365-
366. MIT Press, 1994.

[14] White R. and Miles F. Principles of Fault Tolerance. In
Proceedings of Eleventh Annual Applied Power electronic
Conference and Exposition, pages 18-25, Vol.1. IEEE Press,
1996.

[15] Thompson A. Evolving fault tolerant systems. In Proceeding
of the First Interntional Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, page
524-529. IEEE Press, 1995.

[16] Layzell, P. Inherent Qualities of Circuits Designed by Artifi-
cial Evolution: A preliminary study of populational fault toler-
ance. In Proceedings of the First NASA/DoD Worshop on Ev-
olvable Hardware, pages 85-86. IEEE Computer Society
Press, 1999.

[17] Stoica A., Keymeulen D., Tawel R., Salazar-Lazaro C., Li
W. Evolutionary Experiments with a Fine-Grained Recon-
figurable Architecture for Analog and Digital CMOS Circuits.

In Proceedings of the First NASA/DoD Worshop on Evolvable
Hardware, pages 76-84. IEEE Computer Society Press, 1999.

[18] Zebulum, R. et al., Analog Circuits Evolution in Extrinsic
and Intrinsic Modes. In Proc. of the Second International
Conference, ICES 98, Lausanne, Switzerland, Springer-Verlag
Lecture Notes in Computer Science, 1998, pp 154-165

[19] Devarayanadurg G et al., Test Set Selection fro Structural
Faults in Analog IC's. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp 1026-
1039, Vol.18, No. 7, July 1999. IEEE Press.

[20] Niranjan, S. and Frenzel, J.F., A comparison of fault-tolerant
state machine architecture for space-borne electronics. In
IEEE Transactions on Reliability, pp 109-113, Vol.45, No. 1,
March 1996. IEEE Press.

[21] D. Keymeulen, M. Iwata, Y. Kuniyoshi and T. Higuchi. On-
line evolution for a self-adapting robotic navigation system us-
ing evolvable hardware. Artificial Life, 4(4):359-393, 1999.
Special Issue on Evolutionary Robotics. MIT Press.

[22] Ortega C. and Tyrrell A. Reliability analysis of self-repairing
bio-inspired cellular hardware. In Proceedings of IEE Half-
day Colloquium on Evolutionary Hardware Systems, pp 2/1-
2/5, 2 June 1999. IEEE Press.

[23] Zebulum, R et al. Evolvable Hardware: Automatic Synthesis
of Analog Control Systems. In IEEE Aerospace Conference,
Big Sky, Montana, March 14-25, 2000. IEEE Press
.(submitted and approved)

[24] Higuchi T. et al. Real-World Applications of Analog and
Digital Evolvable Hardware. In IEEE Transactions on Evolu-
tionary Computation, Vol.3, No. 3, September 1999. IEEE
Press.

[25] M. Murakawa, S. Yoshizawa, I. Kajitani, Xin Yao, N. Kaji-
hara, M. Iwata and T. Higuchi The GRD Chip: Genetic Recon-
figuration of DSPs for Neural Network Processing. In IEEE
Transactions on Computers, vol. 48, no. 6, pp.628-639, 1999.
IEEE Press.

[26] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata and T. Higu-
chi. An Evolvable Hardware Chip and Its Application as a
Multi-Function Prosthetic Hand Controller. In Proc. of the
16th National Conference on Artificial Intelligence (AAAI-99),
pp. 182-187, 1999. AAAI Press.

[27] Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., and
Furuya, T. Evolving hardware with genetic learning: A first
step towards building a Darwin machine. In Meyer, Jean-
Arcady, Roitblat, Herbert L. and Wilson, Stewart W. (editors).
From Animals to Animats 2: Proceedings of the Second Inter-
national Conference on Simulation of Adaptive Behavior. pp
417 - 424. 1993. Cambridge, MA: The MIT Press.

[28] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud,
and A. Thakoor. Reconfigurable VLSI Architectures for Ev-
olvable Hardware: from Experimental Field Programmable
Transistor Arrays to Evolution-Oriented Chips. IEEE Trans-
actions on VLSI. 2000, IEEE Press.

[29] D. Keymeulen, A. Stoica, R. Zebulum. Fault-Tolerant Ev-
olvable Hardware using Field Programmable Transistor Ar-
rays. In IEEE Transactions on Reliability, Special Section on
Fault-Tolerant VLSI Systems, 2000 Sept. IEEE Press.

